## MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY, BATHINDA

|       | <u>P</u> 1                                                                                                                                      | h.D. Entr   | ance Examina        | tion of Mechanical      | Engineering                          |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|-------------------------|--------------------------------------|--|--|--|
| Q. 1: | Ph.D. Entrance Examination of Mechanical Engineering  The lowest eigen of $2 \times 2$ matrix $\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$ is |             |                     |                         |                                      |  |  |  |
|       | (a) 1                                                                                                                                           | (b) 2       | (c) 3               | (d) 4                   |                                      |  |  |  |
| Q. 2: | The following simultaneous equations                                                                                                            |             |                     |                         |                                      |  |  |  |
|       | x + y + z = 3                                                                                                                                   |             |                     |                         |                                      |  |  |  |
|       | x + 2y + 3z =                                                                                                                                   | <b>4</b> _  |                     |                         |                                      |  |  |  |
|       | x + 4y + kz = 6                                                                                                                                 |             |                     |                         |                                      |  |  |  |
|       | will not have unique solution for $k$ equal to                                                                                                  |             |                     |                         |                                      |  |  |  |
|       | (a) 7                                                                                                                                           | (b) 6       | (c) 0               | (d) 5                   |                                      |  |  |  |
| Q. 3: | Find the minimum value of the expression                                                                                                        |             |                     |                         |                                      |  |  |  |
|       | (a) -3                                                                                                                                          | (b) 2       | (c) 3/2             | (d) 3                   |                                      |  |  |  |
| Q. 4: | The value of    dl along a circle of radius 2 units is                                                                                          |             |                     |                         |                                      |  |  |  |
|       | (a) Zero                                                                                                                                        |             | c) 2π (c) 4         | 4π (d) 8π               |                                      |  |  |  |
| Q. 5: | The solution of the differential equation $dy = (1+y^2) dx$ is                                                                                  |             |                     |                         |                                      |  |  |  |
| 70-1  |                                                                                                                                                 |             |                     |                         | (d) $2x = \tan^{-1}(y + c)$          |  |  |  |
| Q. 6: |                                                                                                                                                 | ymmetric so | olid, because of sy |                         | ritudinal z-axis, the stresses do no |  |  |  |
|       | (a) x                                                                                                                                           | (b) y       | (c) z               | (d) θ                   |                                      |  |  |  |
| Q. 7: | The argument of the complex number                                                                                                              |             |                     |                         |                                      |  |  |  |
|       | $\sqrt{-1}$ is                                                                                                                                  |             |                     |                         |                                      |  |  |  |
|       | (a) 0                                                                                                                                           | (b) π       | (c) π/2             | (d) $-\pi$              |                                      |  |  |  |
| Q. 8: | The median, mode and mean of 9, 5, 8, 9, 9, 7, 8, 9, 8 are respectively                                                                         |             |                     |                         |                                      |  |  |  |
|       | (a) 9, 9, 9                                                                                                                                     | (           | b) 9, 8, 9          | (c) 8, 9, 8             | (d) 8, 9, 9                          |  |  |  |
| 0.0:  | Consider a D                                                                                                                                    | oisson dist | ribution for the to | ssing of a biased coin, | the mean of distribution is µ. The   |  |  |  |

Q. 9: Consider a Poisson distribution for the tossing of a biased coin, the mean of distribution is μ. I deviation of this distribution is given by

(a)  $\mu^{1/2}$  (b)  $\mu^2$  (c)  $\mu$  (d)  $1/\mu$ 



Scanned with CamScanner

| 1  |                                                                                                           | (a) Shot peening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) Case hard                     | ening                  | (c)         | Inclusions                                        |                        | (d) Grain refinement                      |
|----|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|-------------|---------------------------------------------------|------------------------|-------------------------------------------|
|    | Q. 22:                                                                                                    | . 22: In a manometer using mercury as manometric fluid and measuring the pressure of water conduit, the manometric rise is 0.2 m. The specific gravity of mercury is 13.55. The water in m of water is\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                        |             |                                                   |                        |                                           |
|    |                                                                                                           | (a) 14.55×0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b) 13.55×0.2                     | 2                      | (c)         | 12.55×0.2                                         |                        | (d) none of the given                     |
|    | Q. 23:                                                                                                    | In laminar pipe flow for a given flow rate Q, the power required to overcome friction will be proportional to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                        |             |                                                   |                        |                                           |
|    |                                                                                                           | (a) Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) Q <sup>2</sup>                |                        | (c)         | Q <sup>1/2</sup>                                  |                        | (d) $Q^{3/2}$                             |
|    | Q. 24:                                                                                                    | 4: Two walls of same thickness and cross sectional area have thermal conductivities in the ratio<br>If same temperature difference is maintained across the two faces of both the walls, what is the<br>ratio of heat flow Q <sub>1</sub> /Q <sub>2</sub> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                        |             |                                                   |                        |                                           |
|    |                                                                                                           | (a) 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) 1                             |                        | (c)         | 2                                                 | (d) 4                  |                                           |
|    | Q. 25: Which one of the following numbers represents the ratio of kinematic viscosity to the diffusivity? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                        |             |                                                   |                        | atic viscosity to the thermal             |
|    |                                                                                                           | (a) Grashoff number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (b) Prandtl n                     | umber                  | (c)         | Mach num                                          | ber                    | (d) Nusselt number                        |
|    | Q. 26:                                                                                                    | <ul> <li>For a thermodynamic system, pick up the correct statement regarding path functions and point<br/>functions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                        |             |                                                   |                        |                                           |
|    |                                                                                                           | (a) The point functions are inexact differentials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                        |             |                                                   |                        |                                           |
|    |                                                                                                           | <ul><li>(b) The point functions and point functions are inexact differentials</li><li>(c) The path functions are inexact differentials</li><li>(d) The path functions are exact differentials</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                        |             |                                                   |                        |                                           |
|    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                        |             |                                                   |                        |                                           |
|    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                        |             |                                                   |                        |                                           |
|    | Q. 27:                                                                                                    | 27: For the same maximum pressure and temperature, what is the relation among the efficient the Otto cycle, the Diesel cycle and the Dual cycle?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                        |             |                                                   |                        | ion among the efficiencies (η) of         |
|    |                                                                                                           | <ul> <li>(a) η<sub>Dual</sub> &gt; η<sub>Diesel</sub> &gt; η<sub>Ott</sub></li> <li>(c) η<sub>Diesel</sub> &gt; η<sub>Otto</sub> &gt; η<sub>Dual</sub></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ıl                                |                        | (d)         | $η_{Diesel} > η_{Diesel}$ $η_{Otto} > η_{Diesel}$ | $_{cl} > \eta_{Du}$    | al                                        |
|    | Q. 28:                                                                                                    | When the pressure at which heat is added in Rankine cycle increases, the moisture content at the turbine exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                        |             |                                                   |                        |                                           |
|    |                                                                                                           | (-) !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) decreases                     |                        |             | remains sa                                        |                        | (d) cannot say                            |
|    |                                                                                                           | <ul><li>(a) increases</li><li>(b) 1</li><li>(c) 2</li><li>(d) 1</li><li>(e) 2</li><li>(e) 3</li><li>(f) 2</li><li>(f) 2</li><li></li></ul> |                                   |                        |             |                                                   |                        | s through an air washer in which          |
|    |                                                                                                           | (a) sensible cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | (b) coo                | ling        | and dehum                                         | nidificat              | tion                                      |
|    |                                                                                                           | (c) cooling and humidi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fication                          | (d) heat               | ting        | and humid                                         | ificatio               | n                                         |
|    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                        |             |                                                   |                        |                                           |
| b. | Q. 30:                                                                                                    | Efficiency of the Carnovalue of coefficient of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ot engine is giv<br>performance o | ven as 80<br>of revers | 0%.<br>ed ( | If the cycle<br>Carnot cycle                      | e directi<br>e refrige | ion is reversed, what will be the erator? |
|    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                        |             |                                                   |                        |                                           |

| (          | (a) 1.25                                                                                                                                                              | (b) 0.9                                        |                                |                    | Alta alian            |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|--------------------|-----------------------|--|--|--|
| Q. 31: 1   | The specific speed is I                                                                                                                                               | (b) 0.8                                        | (0                             | 2) 0.5             | (d) 0.25              |  |  |  |
| (          | (a) Pelton wheel                                                                                                                                                      |                                                |                                | (1) 21             |                       |  |  |  |
|            | The crystal structure of                                                                                                                                              | (b) Francis turk                               | oine (c                        | ) Kaplan turbine   | (d) None of the above |  |  |  |
| (          | (a) body centered cub                                                                                                                                                 | ic                                             | (1-) C                         |                    |                       |  |  |  |
|            | (c) hexagonal closed                                                                                                                                                  |                                                |                                | centered cubic     | 1                     |  |  |  |
|            | Chaplets are made of                                                                                                                                                  | (d) body centered tetragonal                   |                                |                    |                       |  |  |  |
|            | (a) graphite                                                                                                                                                          | (b) plastic                                    |                                |                    |                       |  |  |  |
|            | (c) same metal as the                                                                                                                                                 |                                                | (                              | d) none of the abo | ove                   |  |  |  |
|            | Cold working of metal forming processes is carried out                                                                                                                |                                                |                                |                    |                       |  |  |  |
|            | (a) below the recrysta                                                                                                                                                |                                                |                                | (b) At mel         | ting point            |  |  |  |
|            | (c) above the recrysta                                                                                                                                                |                                                |                                |                    | melting point         |  |  |  |
| Q. 35:     | Soft solder consists of                                                                                                                                               |                                                |                                | ,                  | 9 F                   |  |  |  |
|            | (a) copper and tin                                                                                                                                                    |                                                | (b) lead                       | and zinc           |                       |  |  |  |
|            | (c) lead and tin                                                                                                                                                      |                                                | (d) lead                       | and aluminium      |                       |  |  |  |
| Q. 36:     | Tool life criterion is normally used is                                                                                                                               |                                                |                                |                    |                       |  |  |  |
|            | (a) flank wear                                                                                                                                                        |                                                | (b) crat                       | er wear            |                       |  |  |  |
|            | (c) crater and flank wear                                                                                                                                             |                                                | (d) flank wear and nose radius |                    |                       |  |  |  |
| Q. 37:     | Which type of tolera                                                                                                                                                  | Which type of tolerance does a slip gauge have |                                |                    |                       |  |  |  |
|            | (a) unilateral tolerar                                                                                                                                                | nce                                            | (b) bilateral tolerance        |                    |                       |  |  |  |
|            | (c) three dimensional tolerance (d) none of the above                                                                                                                 |                                                |                                |                    |                       |  |  |  |
| Q. 38:     | : When setting up a mechanical drawing in Auto CAD the drafter should set the units to                                                                                |                                                |                                |                    |                       |  |  |  |
|            | (a) metric                                                                                                                                                            | (b) decimal                                    |                                |                    |                       |  |  |  |
|            | (c) fractional (d) architectural                                                                                                                                      |                                                |                                |                    |                       |  |  |  |
| Q. 39      | ABC inventory control focuses on those                                                                                                                                |                                                |                                |                    |                       |  |  |  |
|            | (a) items which are                                                                                                                                                   |                                                |                                |                    |                       |  |  |  |
|            | (c) items which has                                                                                                                                                   | d (d) items which consume more money           |                                |                    |                       |  |  |  |
| Q. 40      | : A PERT network has 9 activities on its critical path. The standard deviation of each activity on the critical path is 3. The standard deviation of critical path is |                                                |                                |                    |                       |  |  |  |
| A STATE OF |                                                                                                                                                                       | (b) 9                                          |                                | (c) 81             | (d) 27                |  |  |  |
|            | (a) 3                                                                                                                                                                 |                                                |                                |                    |                       |  |  |  |

## Answer Key of MCQ Question Paper for Ph.D. Entrance Examination of Mechanical Engineering

- Q. 1: (b) 2
- Q. 2: (a) 7
- Q. 3: (d) 3
- Q. 4: (a) Zero
- **Q. 5:** (b)  $y = \tan(x + c)$
- Q. 6: (d)  $\theta$
- Q. 7: (c)  $\pi/2$
- Q. 8: (c) 8, 9, 8
- Q. 9: (a)  $\mu^{1/2}$
- Q. 10: (b) 75
- Q. 11: (c) 16 cm<sup>4</sup>
- Q. 12: (c) 35 N-s
- Q. 13: (b) 8 tonnes/cm<sup>2</sup>
- Q. 14: (d) 3/8 times
- **Q.** 15: (a)  $\tau^2_{\text{max}}/4G$
- Q. 16: (b) determine linear acceleration of piston
- Q. 17: (c) Two
- **Q. 18:** (a)  $\omega/\omega_n > 2^{0.5}$
- Q. 19: (b) 200
- Q. 20: (d) 50%
- Q. 21: (c) Inclusions
- Q. 22: (c) 12.55×0.2
- Q. 23: (b) Q<sup>2</sup>

