MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY, BATHINDA | | <u>P</u> 1 | h.D. Entr | ance Examina | tion of Mechanical | Engineering | | | | |-------|---|-------------|---------------------|-------------------------|--------------------------------------|--|--|--| | Q. 1: | Ph.D. Entrance Examination of Mechanical Engineering The lowest eigen of 2×2 matrix $\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$ is | | | | | | | | | | (a) 1 | (b) 2 | (c) 3 | (d) 4 | | | | | | Q. 2: | The following simultaneous equations | | | | | | | | | | x + y + z = 3 | | | | | | | | | | x + 2y + 3z = | 4 _ | | | | | | | | | x + 4y + kz = 6 | | | | | | | | | | will not have unique solution for k equal to | | | | | | | | | | (a) 7 | (b) 6 | (c) 0 | (d) 5 | | | | | | Q. 3: | Find the minimum value of the expression | | | | | | | | | | (a) -3 | (b) 2 | (c) 3/2 | (d) 3 | | | | | | Q. 4: | The value of dl along a circle of radius 2 units is | | | | | | | | | | (a) Zero | | c) 2π (c) 4 | 4π (d) 8π | | | | | | Q. 5: | The solution of the differential equation $dy = (1+y^2) dx$ is | | | | | | | | | 70-1 | | | | | (d) $2x = \tan^{-1}(y + c)$ | | | | | Q. 6: | | ymmetric so | olid, because of sy | | ritudinal z-axis, the stresses do no | | | | | | (a) x | (b) y | (c) z | (d) θ | | | | | | Q. 7: | The argument of the complex number | | | | | | | | | | $\sqrt{-1}$ is | | | | | | | | | | (a) 0 | (b) π | (c) π/2 | (d) $-\pi$ | | | | | | Q. 8: | The median, mode and mean of 9, 5, 8, 9, 9, 7, 8, 9, 8 are respectively | | | | | | | | | | (a) 9, 9, 9 | (| b) 9, 8, 9 | (c) 8, 9, 8 | (d) 8, 9, 9 | | | | | 0.0: | Consider a D | oisson dist | ribution for the to | ssing of a biased coin, | the mean of distribution is µ. The | | | | Q. 9: Consider a Poisson distribution for the tossing of a biased coin, the mean of distribution is μ. I deviation of this distribution is given by (a) $\mu^{1/2}$ (b) μ^2 (c) μ (d) $1/\mu$ Scanned with CamScanner | 1 | | (a) Shot peening | (b) Case hard | ening | (c) | Inclusions | | (d) Grain refinement | |----|---|--|-----------------------------------|------------------------|-------------|---|------------------------|---| | | Q. 22: | . 22: In a manometer using mercury as manometric fluid and measuring the pressure of water conduit, the manometric rise is 0.2 m. The specific gravity of mercury is 13.55. The water in m of water is\ | | | | | | | | | | (a) 14.55×0.2 | (b) 13.55×0.2 | 2 | (c) | 12.55×0.2 | | (d) none of the given | | | Q. 23: | In laminar pipe flow for a given flow rate Q, the power required to overcome friction will be proportional to | | | | | | | | | | (a) Q | (b) Q ² | | (c) | Q ^{1/2} | | (d) $Q^{3/2}$ | | | Q. 24: | 4: Two walls of same thickness and cross sectional area have thermal conductivities in the ratio
If same temperature difference is maintained across the two faces of both the walls, what is the
ratio of heat flow Q ₁ /Q ₂ ? | | | | | | | | | | (a) 1/2 | (b) 1 | | (c) | 2 | (d) 4 | | | | Q. 25: Which one of the following numbers represents the ratio of kinematic viscosity to the diffusivity? | | | | | | | atic viscosity to the thermal | | | | (a) Grashoff number | (b) Prandtl n | umber | (c) | Mach num | ber | (d) Nusselt number | | | Q. 26: | For a thermodynamic system, pick up the correct statement regarding path functions and point
functions | | | | | | | | | | (a) The point functions are inexact differentials | | | | | | | | | | (b) The point functions and point functions are inexact differentials(c) The path functions are inexact differentials(d) The path functions are exact differentials | Q. 27: | 27: For the same maximum pressure and temperature, what is the relation among the efficient the Otto cycle, the Diesel cycle and the Dual cycle? | | | | | | ion among the efficiencies (η) of | | | | (a) η_{Dual} > η_{Diesel} > η_{Ott} (c) η_{Diesel} > η_{Otto} > η_{Dual} | ıl | | (d) | $η_{Diesel} > η_{Diesel}$ $η_{Otto} > η_{Diesel}$ | $_{cl} > \eta_{Du}$ | al | | | Q. 28: | When the pressure at which heat is added in Rankine cycle increases, the moisture content at the turbine exhaust | | | | | | | | | | (-) ! | (b) decreases | | | remains sa | | (d) cannot say | | | | (a) increases(b) 1(c) 2(d) 1(e) 2(e) 3(f) 2(f) 2 | | | | | | s through an air washer in which | | | | (a) sensible cooling | | (b) coo | ling | and dehum | nidificat | tion | | | | (c) cooling and humidi | fication | (d) heat | ting | and humid | ificatio | n | | | | | | | | | | | | b. | Q. 30: | Efficiency of the Carnovalue of coefficient of | ot engine is giv
performance o | ven as 80
of revers | 0%.
ed (| If the cycle
Carnot cycle | e directi
e refrige | ion is reversed, what will be the erator? | | | | | | | | | | | | (| (a) 1.25 | (b) 0.9 | | | Alta alian | | | | |------------|---|--|--------------------------------|--------------------|-----------------------|--|--|--| | Q. 31: 1 | The specific speed is I | (b) 0.8 | (0 | 2) 0.5 | (d) 0.25 | | | | | (| (a) Pelton wheel | | | (1) 21 | | | | | | | The crystal structure of | (b) Francis turk | oine (c |) Kaplan turbine | (d) None of the above | | | | | (| (a) body centered cub | ic | (1-) C | | | | | | | | (c) hexagonal closed | | | centered cubic | 1 | | | | | | Chaplets are made of | (d) body centered tetragonal | | | | | | | | | (a) graphite | (b) plastic | | | | | | | | | (c) same metal as the | | (| d) none of the abo | ove | | | | | | Cold working of metal forming processes is carried out | | | | | | | | | | (a) below the recrysta | | | (b) At mel | ting point | | | | | | (c) above the recrysta | | | | melting point | | | | | Q. 35: | Soft solder consists of | | | , | 9 F | | | | | | (a) copper and tin | | (b) lead | and zinc | | | | | | | (c) lead and tin | | (d) lead | and aluminium | | | | | | Q. 36: | Tool life criterion is normally used is | | | | | | | | | | (a) flank wear | | (b) crat | er wear | | | | | | | (c) crater and flank wear | | (d) flank wear and nose radius | | | | | | | Q. 37: | Which type of tolera | Which type of tolerance does a slip gauge have | | | | | | | | | (a) unilateral tolerar | nce | (b) bilateral tolerance | | | | | | | | (c) three dimensional tolerance (d) none of the above | | | | | | | | | Q. 38: | : When setting up a mechanical drawing in Auto CAD the drafter should set the units to | | | | | | | | | | (a) metric | (b) decimal | | | | | | | | | (c) fractional (d) architectural | | | | | | | | | Q. 39 | ABC inventory control focuses on those | | | | | | | | | | (a) items which are | | | | | | | | | | (c) items which has | d (d) items which consume more money | | | | | | | | Q. 40 | : A PERT network has 9 activities on its critical path. The standard deviation of each activity on the critical path is 3. The standard deviation of critical path is | | | | | | | | | A STATE OF | | (b) 9 | | (c) 81 | (d) 27 | | | | | | (a) 3 | | | | | | | | ## Answer Key of MCQ Question Paper for Ph.D. Entrance Examination of Mechanical Engineering - Q. 1: (b) 2 - Q. 2: (a) 7 - Q. 3: (d) 3 - Q. 4: (a) Zero - **Q. 5:** (b) $y = \tan(x + c)$ - Q. 6: (d) θ - Q. 7: (c) $\pi/2$ - Q. 8: (c) 8, 9, 8 - Q. 9: (a) $\mu^{1/2}$ - Q. 10: (b) 75 - Q. 11: (c) 16 cm⁴ - Q. 12: (c) 35 N-s - Q. 13: (b) 8 tonnes/cm² - Q. 14: (d) 3/8 times - **Q.** 15: (a) $\tau^2_{\text{max}}/4G$ - Q. 16: (b) determine linear acceleration of piston - Q. 17: (c) Two - **Q. 18:** (a) $\omega/\omega_n > 2^{0.5}$ - Q. 19: (b) 200 - Q. 20: (d) 50% - Q. 21: (c) Inclusions - Q. 22: (c) 12.55×0.2 - Q. 23: (b) Q²